Introduction to Statistical Learning Schedule

Note: The timeline of topics and assignments might be updated throughout the semester.

Day Date Topic Notes Outline Project Lab Homework Exam
1 15 April Course Intro, Ch 1 - Stat Learning Examples, Ch 2 - SL, Bias-Variance Tradeoff
2 16 April Ch 5 - Cross Validation, Tidy Models
3 17 April Ch 5 - Cross Validation, Tidy Models, Ch 3 - LR
4 18 April Ch 4 - Logistic Regression
5 19 April Ch 4 - LDA, QDA
6 22 April Ch 4 - Naive Bayes, KMeans Classification
7 23 April Ch 6 - Subset Selection
8 24 April Ch 6 - Shrinkage Methods
9 25 April Tidymodel recipies
10 26 April Exam
11 29 April Ch 6 - Dimension Reduction, project
12 30 April Ch 8 - Decision Trees, project
13 1 May Ch 8 - Bagging, RF, Boosting, project
14 2 May Ch 8 - Bagging, RF, Boosting, project
15 3 May Ch 8 - Bagging, RF, Boosting, project
16 6 May Ch 12 - PCA or Clustering, project
17 7 May Finish Up, watch project videos, surveys etc
18 8 May Exam